

Page 1 of 3

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950

Problem Statement
Organizations need to configure and deploy systems at scale using a reliable, secure, and
consistent methodology. Across an organization’s business units, systems can vary from simple
to complex and need to be supported in production environments by SRE/DevOps teams
without suffering the “lowest common denominator” effect in which the process is so generic it
is not good for any system deployment. Additionally, SDLC best practices suggest having teams
run development and test environments in the exact same manner as prod, increases time to
market and operational efficiency; development teams using deployment tools will contribute
to their improvement. Consistent tooling eliminates the failure points from the legacy “hand
over” process where dev and qa teams use scripts and shortcuts in their dev cycles that are not
used by SRE. Many hours are lost to the business when deployments fail due to missing
features and configurations that dev environments had, that SRE run production environments
do not.

After years of development work, many organizations end up with myriad methods of
configuration and deployment, which requires method-specific SRE teams. Furthermore, it
becomes difficult for a large organization to apply procedural oversight, ensure security and
audit requirements, and enforce production deployment gates consistently across the different
methods of deployment.

Most organizations have heterogeneous runtime environments, from highly optimized bare

metal servers running in colo to Kubernetes clusters in public/private cloud infrastructure.

Matching applications, infrastructure, and network security requirements across the different

deployment methods is generally a heavily manual effort which is error-prone especially during

high-stress times like production outages.

Finally, these processes make it very difficult to answer the questions: what exact software

versions were running; what exact configuration values were used by the software; what data

was processed by the system, and in what order did it happen. For companies in regulated

industries, answering this question can be somewhere between extremely time consuming and

expensive, to nearly impossible.

Page 2 of 3

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950

Elyxor Solution

Operational Simplicity

• Simple and repeatable pattern for configuring and deploying systems at scale

• Environments run in a guaranteed known and deterministic configured state
o Precise version of each software for each instance
o Exact configuration values for each instance

• Push-button deploy/rollback mechanism

• Single model for describing systems and their configuration
o Support simple and complex system footprints
o Deploy same modelled system into containers, vms, or onto bare metals

• Eventual consistency across environments (i.e. Dev -> QA -> UAT -> Prod) with the ability
to see deltas between environments, regardless of infrastructure deployed into

• Support for targeted upgrades that allow individual components to be updated with a
smart, efficient deployment mechanism

• Automated application of business and technical gating and validation rules when
systems are modified, prior to deployment

• Optimized deployment footprint for systems with global footprints. Especially relevant
when moving data is costly due to high-latency or other constraints

• Scheduled or stage deployments into environments at times non-business critical

• Assume zero-trust environments with deployment describing and provisioning allowed
inbound and outbound connectivity

Transparency and a single source of truth

• A single model and repository to store system definition, configuration values

• APIs are available for system deployment, configuration, and introspection in real-time

• Visualize a system, running or planned next release, as a tree graph or grid and quickly
determine what versions of what apps are running where

• Full audit history of all changes to running systems

• Single place for break glass management
o Make a change in one place and have it picked up by all instances
o Auto-commit break glass changes or alert on broken glass
o Converge to latest committed state

• Easily link running software version with code commits and ticket tracking systems

• Visualize differences between versions of a configured system
o Release planning: Dry run a to-be-released version of the system against the

running version
o Eventual consistency: See differences between the same system in different

environments
o Auditing: Ability to take any two historically deployed versions and see the

difference between on-disk directory and files

Page 3 of 3

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950
Operational Consistency

• Deployments to all environments, regardless of team ownership and infrastructure
system is run on, is done using the same tool chain.

• Deployment and monitoring tools have their own SDLC with releases and are deployed
with the same tool chain

• Debugging, monitoring, and alerting processes are consistent across environments

Runtime Configuration Model

• TBD: Description of how a system is modelled

• TBD: Describe how devs and SRE interact with it

Initbox Tooling
TBD: Diagram of how initbox takes runtime config and distributes it

Initbox Pattern in Practice
Custom enterprise implementations based on the industry standard jumphost-model were delivered for

two premier NY-based financial institutions.

Tech Stack
• Java/Kotlin
• Python
• Ansible
• JSON/YAML
• Git Pipelines
• OpenApi 3

