

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950

Objectives and Challenges
Our client, a multi-state online and physical cannabis retailer, had several technical and
business process challenges. The cannabis market mandates systems which, by law, must be
used for specific portions of the seed to sale process. There is no consistency between all
states; states require using specific seed-to-sale vendors and states also mandate different
stages of the process be reported to their systems. This presented a challenge for operating
their business consistently across all states and having a business-wide view of the state of their
cultivation, manufacturing, production, orders, customers, wholesale, delivery, and marketing
efforts.

Products
Following state regulations, cannabis products can only be cultivated, manufactured, and sold
(or destroyed) within the same state. State systems must be updated regularly with product
information (name, product, THC/CBD levels, lab results, etc.) and inventory levels. Our client
cultivates and produces the same and/or similar products in different states

Customers
Requirements around customer information vary from state to state. Some states have
mandated systems for storing customer info for use within the state. The business must be
able to identify a customer who shops in multiple states for loyalty, customer service, and
marketing purposes. Some states mandate anonymity for recreational customers such that
there is no storage of individually identifying information. Since Medical customers are required
to register with the state, and maintain an active recommendation from their doctor, there is
more information available for these individuals. States still require different storage and
transportation requirements for customer specific data.

Orders
When a reservation is placed, to meet all the different state and business needs, a chain of
business actions needs to happen:

• Check available inventory levels

• update inventory levels

• report purchase details to the state

• trigger loyalty achievements

• update demand planning systems

• update corporate finance systems

• update executive business dashboards
Due to the state-to-state requirements and variances, there are multiple inbound order
systems that need to be accounted for.

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950

Client Implementation
To operate their business given the demanding technical logistics, they had variety of different
shims in place to connect systems together. They were using an ERP system, a data
transformation service, google sheets with JavaScript, MS Excel, and a host of other tools to
operate day by day. In some cases, there were vendor to vendor implementations to exchange
data, and in other cases, data came through our client’s systems. Their systems required a
large amount of human capital to run and manage and had an enormous amount of risk for
errors.

Goal State
The Elyxor response to this challenge was to design and implement a Service Layer built on a
message bus to handle and manage inbound and outbound data. Systems of records for
different business objects could be identified, and this data would then be distributed to other
systems which needed it. Disparate 3rd party systems used by the business, which could not be
consolidated, would communicate with the Service Layer, to send or receive information.

Inbound data would be cleansed and validated and stored in a unified internal format, marked
by the system of record where it was sourced or generated. Adapters could be implemented to
transform that data into appropriate formats for consuming systems. Data would be made
available in a Data Lake for analytics and reporting.

The system would be event-driven using reactive development patterns so that it would be
efficient, performant, with near-real-time data updates. Data would be pushed to consumers as
soon as it was validated and became available. APIs would be created for consuming systems
with no push capabilities, so that they could consume data on a configurable interval.

Elyxor Approach
The Service Layer is a net-new system using a microservice architecture deployed as containers
within Azure. The summary of the project approach is shown in the following sections.

SDLC
The project used agile practices and 3-week sprints. The team consisted of several developers,
a Scrum Master/Tech Lead, a process analyst, and two DevOps engineers. The project was
organized around first getting the SDLC working, the infrastructure stood up, and finally tackling
the individual domain models (Locations, Customers, Inventory, Orders, etc).
The DevOps engineers set up GitHub pipelines for provisioning Azure resources and
infrastructure using Terraform. They also setup pipelines to build and deploy the Kotlin/Java
microservices.

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950

Domain Model Analysis
Work was completed by the process analyst to work with the business and client’s existing
technical team to understand what the sources of data were and how this data could be
grouped into domain objects. This included a deep analysis of the current processes, some of
which were very poorly understood and documented. The output of this provided a view of the
data sources and consumers. For each domain model, it was required to understand how many
systems of record produced new data, what the data format was and to map the data to the
client’s unified format for that domain model, and what systems needed to consume new,
updated, or deleted data when the systems of record provided updates. This analysis yielded
the prioritization of the microservice development.

Infrastructure
Using the standard “infrastructure as code” pattern, the team configured Terraform Cloud,
connected to GitHub and linked to Azure to provide pipelines for provisioning networks,
subnets, application gateways, storage, and the other infrastructure needs of the Service Layer.
The initial rollout had 4 environments, dev (CICD), qa, stage, and production, which were
reflected in Terraform Cloud as a workspace per environment.

The dev environment was setup to use CICD, so that when build pipelines pushed new or
updated containers to DockerHub, the dev environment would be refreshed with the new
images.

Azure Key Vault was used to store secrets.

Microservices
Each domain model had a set of microservices built as Verticles using the Vertx framework.
Communication between the microservices was message based and could be implemented
over RabbitMQ or using API calls. The Service Layer microservices all used RabbitMQ messaging
for communication, with API verticles wrapping the message calls to provide access to client
system which couldn’t use RabbitMQ.

Low-volume microservcies all ran as verticles in a single JVM in a single container instance. For
the services that had higher load or performance requirements, verticles could be cloned and
moved into any number of container configurations to meet scale requirements. For example,
inbound order information, especially at peak times of the day, were implemented as a cluster
of order validator verticles to guarantee they were processed quickly.

The microservice design is flexible and allows the team to quickly adjust the footprint of the
system to meet the changing characteristics of the data generate by the business and its
customers.

Little Rock Office:

401 Main Street, Suite 203

North Little Rock, AR 72114

Boston Office:

1 Harris Street

Unit 7

Newburyport, MA 01950

Monitoring
The microservices used the Micrometer library to produce metrics and publish them to an
InfluxDB Cloud instance. Dashboards were created for each microservice to monitor its
performance. Higher-level monitoring dashboards were also published to provide system and
business insights. These did not replace the business reporting used by the business, rather, it
augmented these reporting tools to provide valuable lower-level detail for performance
monitoring and for proactive troubleshooting.

Tech Stack
• Kotlin / Java

• Vertx

• Maven

• InfluxDB Cloud

• Micrometer

• Azure
o MsSql Server
o Container Groups
o Kubernetes Service (AKS)
o App Gateway
o Key Vault
o Storage
o Networking
o ActiveDirectory
o DataFactory

• Terraform

• GitHub

• Locust.io

• Docker
o DockerHub
o Docker-Compose

• OpenAPI 3 (OAS)

• RabbitMQ

• SalesForce API

• Microsoft Dynamics 365 (NAV)

